
RubyCOP: A Feature-Based Context-Oriented
Programming Framework

Benoı̂t Duhoux
INGI / ICTEAM / UCLouvain
benoit.duhoux@uclouvain.be

Kim Mens
INGI / ICTEAM / UCLouvain

kim.mens@uclouvain.be

Bruno Dumas
PReCISE / NADI / UNamur

bruno.dumas@unamur.be

I. INTRODUCTION

Context-aware systems [1] are systems that adapt their be-
havior dynamically when sensing changes in the surrounding
environment in which they run. These changes may come
from changing user preferences, external sensors (weather,
localisation), or internal sensors (battery, memory) of the
device. The paradigm of context-oriented programming [2],
[3] provides dedicated programming language abstractions
to adapt the behaviour of a software system dynamically
upon changing contexts. In context-oriented programming
(COP), contexts and behavioural adaptations are first-class lan-
guage entities. The behavioural adaptations get (de)activated
in the code whenever their corresponding contexts become
(de)activated. Many different COP languages exist [4]–[14].
We also proposed our own specific programming frame-
work [15], RubyCOP, to implement context-oriented systems
in which we explicitly separate the notions of contexts and fea-
tures. This clear separation promotes a better maintainability
and reusability in developping such systems. Our RubyCOP
programming framework is part of a more complete approach
to feature-based context-oriented software development, which
also consists of an architecture [16], a supporting development
methodology and two visualisation tools [17], [18]. This
presentation will focus only on the programming framework.

II. FEATURE-BASED CONTEXT-ORIENTED PROGRAMMING

Feature-based context-oriented programming (FBCOP)
builds upon context-oriented programming [3], feature mod-
elling [19] and dynamic software product lines [20]. In this
new programming paradigm, contexts and features are clearly
separated and modelled in terms of a feature diagram to
represent, respectively, a context model and feature model.
Such models are tree-like structures where the nodes represent
the contexts or features and the edges represent the constraints
between the different nodes. A context-feature mapping then
expresses what contexts trigger what features in order to adapt
the system behaviour when contexts change.

III. RUBYCOP

Following the underlying principles of FBCOP, we built an
application programming framework on top of the Ruby pro-
gramming language. This programming framework provides
native buildings blocks to declare contexts and features as
first-class citizens. It also provides dedicated abstractions and

language constructs to define the context model, the feature
model and the mapping between the context and feature model.
In addition it offers specific language constructs to implement
the adaptive behaviour of the features (code of the features
that adapts or refines the system behaviour). Some of these
dedicated language constructs are listed in Table I.

TABLE I
RUBYCOP’S LANGUAGE CONSTRUCTS FOR FEATURE DEFINITIONS.

can adapt Declares what application classes may be adapted by
a given feature part.

set prologue Defines what code of a feature part should be exe-
cuted automatically after the activation of a feature.

set epilogue Defines what code of a feature part should be ex-
ecuted automatically before the deactivation of a
feature.

proceed Calls the previous adaptation or default behaviour of
a given method.

Finally, our programming framework also abstracts the
entire process from the (de)activation of contexts to the de-
ployment of features in the system behaviour, via the selection
of features and their (de)activation. This includes the attempt
to (de)activate the contexts and features according to the
constraints imposed by their corresponding models, and their
commits or rollbacks if the models are valid or not (i.e., if all
model constraints are satisfied).

IV. ASSESSING THE FRAMEWORK WITH PROGRAMMERS

To assess whether our programming framework is under-
standable, useful and usable, we conducted two user studies
with programmers. It is important to assess such properties
with developers because a too complex or unusable framework
would never be used in the future to conceive such highly dy-
namic systems. In the presentation we will discuss a first user
study with 41 students who played the role of programmers
of FBCOP applications.

While they appreciated the framework’s expressiveness to
build context and feature models, they lacked some expres-
siveness to implement feature definitions. They also found
the framework to be complex, despite of the supporting
methodology and visualisation tools. This could be explained
by the steep learning curve of the full FBCOP approach and
a lack of documentation of the framework. But also by the
intrinsic complexity of building context-aware systems that can
adapt their behaviour dynamically to many different contexts.



REFERENCES

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in Handheld and Ubiquitous Computing. Springer, 1999,
pp. 304–307.

[2] R. Keays and A. Rakotonirainy, “Context-Oriented Programming,” in
Proceedings of the 3rd ACM International Workshop on Data Engineer-
ing for Wireless and Mobile Access, ser. MobiDE ’03. ACM, 2003, p.
916.

[3] R. Hirschfeld, P. Costanza, and O. Nierstrasz, “Context-Oriented Pro-
gramming,” Journal of Object Technology, vol. 7, no. 3, pp. 125–151,
2008.

[4] P. Costanza and R. Hirschfeld, “Language Constructs for Context-
Oriented Programming: An Overview of ContextL,” in Proceedings of
the 2005 Symposium on Dynamic Languages, ser. DLS ’05. ACM,
2005, p. 110.

[5] S. González, K. Mens, and A. Cádiz, “Context-Oriented Programming
with the Ambient Object System,” Journal of Universal Computer
Science, vol. 14, no. 20, pp. 3307–3332, nov 2008.

[6] R. Hirschfeld, P. Costanza, and M. Haupt, An Introduction to Context-
Oriented Programming with ContextS, ser. GTTSE ’07. Springer, 2008,
pp. 396–407.

[7] M. Appeltauer, R. Hirschfeld, and T. Rho, “Dedicated Programming
Support for Context-Aware Ubiquitous Applications,” in The Second
International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies. IEEE, sept 2008, pp. 38–43.

[8] J. Lincke, M. Appeltauer, B. Steinert, and R. Hirschfeld, “An open
implementation for context-oriented layer composition in ContextJS,”
Science of Computer Programming, vol. 76, no. 12, pp. 1194–1209,
2011.

[9] T. Kamina, T. Aotani, and H. Masuhara, “EventCJ: A Context-Oriented
Programming Language with Declarative Event-Based Context Transi-
tion,” in Proceedings of the Tenth International Conference on Aspect-
Oriented Software Development, ser. AOSD ’11. ACM, 2011, p.
253264.

[10] S. González, N. Cardozo, K. Mens, A. Cádiz, J.-C. Libbrecht, and
J. Goffaux, Subjective-C, ser. SLE ’10. Springer, 2011, pp. 246–265.

[11] T. Aotani, T. Kamina, and H. Masuhara, “Featherweight EventCJ: A
Core Calculus for a Context-oriented Language with Event-based Per-
instance Layer Transition,” in Proceedings of the 3rd International
Workshop on Context-Oriented Programming, ser. COP ’11. ACM,
2011, pp. 1:1–1:7.

[12] G. Salvaneschi, C. Ghezzi, and M. Pradella, “ContextErlang: Introducing
Context-oriented Programming in the Actor Model,” in Proceedings of
the 11th Annual International Conference on Aspect-oriented Software
Development, ser. AOSD ’12. ACM, 2012, pp. 191–202.

[13] T. Poncelet and L. Vigneron, “The Phenomenal Gem: Putting features
as a service on Rails,” Master’s thesis, Université catholique de Louvain,
2012.

[14] S. González, K. Mens, M. Colacioiu, and W. Cazzola, “Context Traits:
Dynamic Behaviour Adaptation Through Run-time Trait Recomposi-
tion,” in Proceedings of the 12th Annual International Conference on
Aspect-oriented Software Development, ser. AOSD ’13. ACM, 2013,
pp. 209–220.

[15] B. Duhoux, K. Mens, and B. Dumas, “Implementation of a Feature-
Based Context-Oriented Programming Language,” in Proceedings of the
Workshop on Context-Oriented Programming, ser. COP ’19. ACM,
2019, p. 916.

[16] K. Mens, N. Cardozo, and B. Duhoux, “A Context-Oriented Software
Architecture,” in Proceedings of the 8th International Workshop on
Context-Oriented Programming, ser. COP ’16. ACM, 2016, pp. 7–
12.

[17] B. Duhoux, K. Mens, and B. Dumas, “Feature Visualiser: An Inspection
Tool for Context-Oriented Programmers,” in Proceedings of the 10th
International Workshop on Context-Oriented Programming: Advanced
Modularity for Run-Time Composition, ser. COP ’18. ACM, 2018, p.
1522.

[18] B. Duhoux, B. Dumas, H. S. Leung, and K. Mens, “Dynamic Visuali-
sation of Features and Contexts for Context-Oriented Programmers,” in
Proceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, ser. EICS ’19. ACM, 2019.

[19] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Pe-
terson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study,”

Carnegie-Mellon University Software Engineering Institute, Tech. Rep.,
November 1990.

[20] H. Hartmann and T. Trew, “Using Feature Diagrams with Context Vari-
ability to Model Multiple Product Lines for Software Supply Chains,”
in Proceedings of 12th International Software Product Line Conference,
ser. SPLC ’08. IEEE, 2008, pp. 12–21.


