
Detecting Knowledge Islands in Software
Development Processes

Christoph Gote
Chair of Systems Design

ETH Zurich
Zurich, Switzerland

cgote@ethz.ch

A knowledge island in a software development team is an
individual or a small group of team members performing tasks
that no other team member can perform. They can represent
a severe threat to the maintenance and future development of
a software product, a risk commonly expressed as the truck
factor in software engineering. However, knowledge islands
can remain undetected in complex development processes,
e.g., the one of the German IT security company genua shown
in Figure 1.

At genua, issues (i.e., bugs or feature requests) are first
collected in an issue tracker. Here, they are discussed and
eventually assigned to a team member who develops a change
to resolve the issue. The development takes place on a code
review platform, where, following a six-eye principle, the
change is subsequently reviewed and integrated by two other
developers. Once this process is completed, the issue is marked
as resolved on the issue tracker. After a quality assurance test,
the issue is finally closed. Notably, every step in this process
can fail (e.g., code review or quality assurance) or be retracted
(e.g., an issue assignment or a developed change), resulting in
extended issue-specific action sequences, i.e., paths.

In this work, we mine the paths for all issues related to
one of genua’s core products from 1999 to 2019, yielding
over 40,000 paths. We subsequently assess the centralities of
individual team members on these paths over time. To do
so, we use path centrality measures based on MOGen [1], a
multi-order generative model specifically designed to capture
temporal patterns in path data. Such centrality measures allow
us to identify which team members are essential. Employing
path centrality measures is essential, as simple network models
underfit the temporal characteristics of path data, whereas
directly analysing the paths would result in us overfitting
these patterns instead [2]. Using this approach, we detect two
knowledge islands in the team’s development process. First,
only a single person performs quality assurance tests. Second,
change integration is only performed by three team members.

In semi-structured interviews, we find that the top five team
members our path analysis identified as highly central are
all included in the six members the team itself considers
essential. This congruence is remarkable, as we identified
these team members from 176 candidates. We further find
that the team is well aware of the substantial knowledge and
project overview required to perform change integration. They

issue report

issue discussion

issue assignment

change development

code review

change integration

issue resolved

quality assurance test

issue closed

bug

feature request

resolved bug

new feature

codebase

Bugzilla/Redmine
Issue Tracker

Environment
Aegis

Code Review
Git

Version Control

Fig. 1. Simplified representation of the development process at genua. The
process takes place over multiple platforms. Backward loops are not displayed.

actively promote collaboration and knowledge sharing between
team members through a strict code review process, Scrum,
and pair programming. With three different (and changing)
team members performing integrations throughout the 20-year
observation period, we can validate the success of these efforts
in our data. In contrast, the team is largely unaware of the
single developer D performing the quality assurance process.
When specifically asking about D, we learned:

“If [D] is absent or unable to perform the work,
we have a massive problem.” “If there are any steps
taken to moderate the consequences if [D] was no
longer there? I don’t know; I haven’t witnessed any.”

In conclusion, we show that the complexity of software
development processes can result in undetected knowledge
islands in teams. By analysing how issues traverse through
the development process, we can support teams in their
identification and resolution.

REFERENCES

[1] Gote, C.; Casiraghi, G.; Schweitzer, F.; Scholtes, I. (2020).
Predicting Sequences of Traversed Nodes in Graphs using
Network Models with Multiple Higher Orders. arXiv
preprint arXiv:2007.06662 .

[2] Gote, C.; Perri, V.; Scholtes, I. (2021). Predicting Influ-
ential Higher-Order Patterns in Temporal Network Data.
arXiv preprint arXiv:2107.12100 .


