Language-agnostic multi-paradigm code quality
assurance framework

Marnick Q.T.P. van der Arend’

TUniversity of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands

Abstract

Several object-oriented programming (OOP) languages have implemented constructs from the functional
programming (FP) paradigm. We call them multi-paradigm (MP) programming languages. To measure
code quality, the use of metrics is often included. While metrics for a specific paradigm are well-known,
there are few multi-paradigm metrics. Such metrics are only implemented for a specific MP language.
We explore the design of a language-agnostic multi-paradigm code quality assurance framework. This
framework transforms MP languages to a generic model to extract metrics for OOP, FP and MP. We
conclude, by using transformations and analysis, that we can do code quality assurance for every MP
language.

Keywords

multi-paradigm, language-agnostic, code quality assurance, modelling, parsing, metrics

1. Introduction

Programming languages come in many shapes and sizes. They are categorised by their pro-
gramming paradigm. Every programming paradigm has its purpose, solving a certain problem
with the best solution. A large number of popular general purpose programming languages
have adopted multiple programming paradigms within their language. While using multiple
paradigms can help solve a problem in different ways, on the other hand, it can produce new
combinations that lead to unintended behaviour of the written code. Code quality can be
measured to decrease the possibility for unintended behaviour. Code quality for individual
programming languages can be measured and improved using code quality assurance tools.
These tools try to locate areas of improvement for a source code with e.g. the use of static code
analysis. Quality assurance tools can analyse source code before it is being tested and therefore,
potential problems can be addressed early when it is relatively cheap to fix [1].

With code quality assurance, we use metrics to measure the quality of source code. While there
have been decades of research on paradigm-specific metrics, e.g. object-oriented programming
(OOP) [2, 3] or functional programming (FP) [4], there has been less research into metrics that
capture the mixed use of these programming paradigms. In this paper, we refer to the mixed
use of OOP and FP as multi-paradigm (MP) programming.

Research into MP metrics has focused on detecting fault proneness in software programs [5, 6,

Belgium-Netherlands Software Evolution Workshop, 2022

& m.q.t.p.vanderarend@student.utwente.nl (M. Q.T.P.v.d. Arend)

® 0000-0001-6689-1596 (M. Q.T.P.v.d. Arend)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
L == CEUR Workshop Proceedings (CEUR-WS.org)


mailto:m.q.t.p.vanderarend@student.utwente.nl
https://orcid.org/0000-0001-6689-1596
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

7]. These research projects identified and validated MP metrics for use in the MP programming
languages C# and Scala. Due to data constraints, the accuracy of the fault proneness detection
was poor. Software projects are built in different ways and implement concepts of paradigms
differently. Therefore, a large data set is crucial for accurate predictions of fault proneness.

We see many similarities in the MP constructs of C# and Scala. Code quality metrics are not
bound by any specific programming language but rather by programming paradigm. Therefore,
we hypothesise that code quality can be measured on a language-agnostic level. We hypothesise
that we can abstract from language-specific syntactical context and extract the concepts and
constructs of these MP programming languages to measure code quality. If our hypothesis is
confirmed, we can use open source project codebases for each MP programming language to
measure code quality in a language-agnostic manner. The number of codebases that can be
measured with our framework increases and therefore, increasing the accuracy of predicting
external quality attributes such as fault proneness.

Besides solving the scarcity of data, performance is an important challenge. The speed and
accuracy of measurements executed by a language-agnostic code quality assurance approach
must be comparable to a language-specific approach. Therefore, this research explores the
design of a performant language-agnostic code quality assurance framework that can assess
the quality of source code for MP languages. If the framework is as performant as a language-
specific approach, we can decrease the time required for developing new code quality assurance
tools for MP languages.

The contribution of this paper is providing a theoretical background and an approach for a
framework with which MP source code can be assessed on its code quality in a language-agnostic
setting.

2. Background

In this section we walk through the context in which the language-agnostic multi-paradigm
code quality assurance framework will be designed.

2.1. Multi-Paradigm Languages

To understand what type of framework should be designed, it is important to clarify the concepts
of MP programming languages.

There is a large number of popular programming languages that are MP. Python, Java,
JavaScript and C# account for more than 50% of share in popularity [8]. Three of these languages
are primarily object-oriented with functional constructs integrated at a later stage. E.g., Java
integrated lambda expressions in Java 8 that allowed for functional constructs like map, filter
and count on collections [9].

OOP is considered a part of imperative programming paradigm. The term was originally
coined by Dr. Alan Kay in 1966 describing an architecture for messaging where objects pass on
messages using procedures (i.e. methods) [10]. It strongly focuses on states and modifiable data.

FP is part of the declarative programming paradigm and originates from Lambda Calculus
[11], a formal system in mathematical logic for expressing computation based on function
abstraction and application using variable binding and substitution [12].



Within MP languages, the data encapsulation and the type system of the OOP paradigm are
often used. There are improvements to make the language more suitable to adopting the FP
paradigm by the addition of (anonymous) function types.

2.1.1.

2.1.2.

Object-Oriented concepts

Encapsulation: data and the methods that operate on that data are encapsulated within
the context of OOP with classes. It is used to protect the private information of that class
and only expose functionality that is made public [13].

Inheritance: a class within OOP can inherit (much of) the functionality from another class.
This hierarchy can exist on multiple levels where a class has one or more children or
parents [13].

Polymorphism: it loosely translates to 'different forms’ from Latin. In OOP, it means that
one class at the root of the hierarchy lays the blueprint for a set of classes with similar
behaviour [13]. E.g., the Bus class and Car class both inherit from vVehicle and this root
class can contain the drive () method which applies to both Bus and Car.

Functional concepts

Functions as First-Class citizens: functions are seen as first-class citizens which means that
they can be used as variables within the source code. Functions can be used as parameters,
passed as return values or stored in a data structure. In FP, the whole program is a function
that can contain other functions to make the program more modular but it outputs a
result in the end [12].

Lambda functions: lambda functions are functions that are based on Lambda Calculus
[11]. Closures within FP are related to Lambda Calculus since lambda functions take
some input, perform some mathematical computation and output a value [14]. Within
FP, there are several types of functions that can be used solve problems with an optimal
solution:

— Anonymous functions: an anonymous function is a function without a name. There-
fore, it cannot be referenced from another part of the code. It is a way to write
a concise solution for a problem that is often only required in one part of your
program.

— Higher-order functions: as we have learnt, functions are first-class citizens within FP.
With this feature, we can create functions that take as arguments one or more other
functions. This type of function is called a higher-order function. The benefit of this
type of function is that its behaviour can change depending on its arguments [6].

— Nested functions: nested functions are a common tool for dividing a function into
readable chunks and increase reusability of source code. Functions are first-class
citizens, which allows them to be created within the scope of another function to
only be referenced within that scope.

Referential transparency: functions are expressions that always output the same value
when the same input values are provided. Therefore, when you refer back to an expression



in a later part of the program, you can be sure that the value of the expression has not
changed. You could change the expression with its value or vice versa and it would not
affect the behaviour of the program [12]. This removes any occurrence of side effects
[15].

« Recursion: looping over collections in FP is performed via recursion instead of sequencing.
In recursive functions, the data state is explicitly passed through via argument(s) of the
function until the base case is reached. Thereafter, this state is passed as output to the
function caller until the start of the recursive operation is reached, thereby completing
the chain [16]. Recursion is used for well-known operations on collections such as map,
reduce and filter.

o Lazy evaluation: non-strict semantics or lazy evaluation, often also called call by need has
a key feature that it only evaluates arguments in functions once. Lazy evaluation allows
the developer to be more expressive and relieves them from concerns about evaluation
order. It is also used for dealing with data structures that have an unbounded size [16].

« Pattern matching: it is a form of syntactic sugar within the FP paradigm that allows a
developer to write multiple equations within a function. In this type of function, only
one of the equations is applicable in a given situation [16].

« Currying: currying can be done by splitting a function that takes multiple arguments into
separate functions with one argument. With a FP function as first-class citizen, functions
can be returned as results in another function. Therefore, function calls can be chained.
The transformation of creating single argument functions from a multi-argument function
is therefore called currying [17], named after the mathematician Haskell Curry.

2.2. Code Quality

Source code comes in many forms, it can be categorised into one or more paradigms, and it is
most often written by humans. Poor source code can have catastrophic effects [18]. Therefore,
it is important to measure the quality of code and fix poor quality code. Code quality describes
the state of a code as being good (high quality) or bad (low quality). ISO and IEC have created
the ISO/IEC 25010:2011 standard [19] which improves upon the ISO/IEC 9126:1991 standard
[20]. The improved standard contains the product quality model that measures code quality
with 8 characteristics:

+ functional suitability

« performance efficiency
« usability

« reliability

« maintainability

« portability

« compatibility

« security

The standard provides consistency for measuring and evaluating software product quality.
The 8 characteristics contain sub-characteristics to provide more context to the characteristic.



The Software Improvement Group has used definitions from the standard to create the Maintain-
ability Model [21]. This model measures the maintainability characteristic in a language-agnostic
manner.

2.3. Source Code Metrics

In Section 2.2 we explained the characteristics of code quality. To measure source code, we can
use metrics. Every programming paradigm has specific metrics tailored to their concepts. For
OOP, a well-known set of metrics was formally defined by Chidamber and Kemerer [22]. These
are:

+ Weighted Method per Class (WMC)

« Number of Ancestor Classes (NAC) [23]

« Number of Descendent Classes (NDC) [23]
+ Coupling Between Objects (CBO)

« Response For a Class (RFC)

« Lack of Cohesion in Methods (LCOM)

In a later mapping study by Nufiez-Varela et al. [24], these metrics were found used by the
larger portion of papers. Other frequently used metrics from this study that were paradigm
agnostic are:

« Source Lines of Code (SLOC)
« Comment Density (CD)
« McCabe’s Cyclomatic Complexity (CC) [25]

There is less research into FP metrics. A study Ryder & Thompson [4] has defined a collection
of metrics for measuring Haskell source code. The metrics discussed in this paper have been
adopted from OOP metrics with additional metrics for a strong type-system, higher-order and
polynomial functions. These metrics include:

« Pattern Size (PSIZ)

« Number of Pattern Variables (NPVS)

« Strongly Connected Component Size (SCCS)
« Pathcount of a Function (PATH)

With our definition of MP languages, we also have to include metrics for the combination of
OOP with FP. A study by Zuilhof [6] defined several metrics:

« Number Of Lambda Functions Used In A Class (LC)

« Source Lines of Lambda (SLOL)

« Lambda Score (LSc)

« Number of Lambda Functions using Outer Variables (LMFV)
« Number of Lambda Functions using Local Variables (LMLV)
« Number of Lambda Functions with Side Effects (LSE)



2.4. Static Code Analysis

As mentioned in Section 1, the quality of source code can be measured using a technique called
static code analysis. Static code analysis is a way to automatically examine a source code
without executing the program it describes [26]. There are several data structures that can be
used to aid static code analysis [27]. In our research, we focus on source code, abstract syntax
trees and control flow graphs. The preferred data structure of each metric is visualised in Table
1. The metrics described in Section 2.3 can be extracted using the techniques described in the
following sections.

2.4.1. Source Code

Source code is human-readable text that defines a set of instructions for what a software program
can do. Our definition of source code includes all physical lines of code, which entails lines of
logical code, comments and blank lines [28]. All of these lines provide structure and domain-
specific context to a user who want to understand that source code, while only executable lines
of code will be compiled.

Source code is translated by a compiler to transform these human-readable instructions into
executable machine code. The first step of the compiler is lexical analysis (i.e. scanning), where
the stream of characters from a source code is read and a lexical token stream is created. These
tokens are stored in a symbol table in the format <token-name, attribute-value>. This
token stream is used as input for syntax analysis (i.e. parsing), where a concrete syntax tree
(CST) (i.e. parse tree) is created that depicts the grammatical structure of the token stream. This
CST is used for semantic analysis to create an AST, which we will cover in Section 2.4.2. After
all analyses phases are completed, machine-executable code is generated. This complex process
often includes code optimisation to make the source code more efficient for the machine to
execute [27, 29].

2.4.2. Abstract Syntax Tree

An abstract syntax tree (AST) is a tree representation of the abstract syntactic structure of a
source code. During semantic analysis, an AST is created from a CST and its corresponding
symbol table. Semantic analysis is used to check if the source code is semantically consistent
with its language definition (i.e. grammar) [29].

2.4.3. Control Flow Graph

A control flow graph (CFG) is a way in which the flow of a software program can be represented.
It is a graph-based representation of control flow relationships within a software program. The
technique was created by Frances E. Allen in 1970 [30]. It is a widely used technique for static
analysis of a program as it can accurately describe the flow of (a part of) a program.

2.4.4. Metric Mapping

In Section 2.3, we covered the code quality metrics. With the data structures covered in the
previous subsections, we have an approach to measure them. To provide an overview of the



preferred choice of a data structure to measure a metric, we have created Table 1.

While it is possible to calculate some metrics with multiple data structures, we have chosen
to show only our preferred choice of data structure for each metric. Some of these metrics do
require multiple data structures to measure a result. E.g., SLOL requires the domain knowledge
retrieved from the AST to extract lambda functions and the source code to count lines of code.
When it is known which data structure is required for a metric, it can easily be used in a code
quality assurance framework.

Table 1
Metric Data Structure Mapping

Abstract Syntax Tree Control Flow Graph | Source Code
Generic | CC SLOC, CD
ooP WMC, NAC, NDC, CBO, RFC, LCOM
FP PSIZ, NPVS SCCS, PATH
MP LC, SLOL", LSc*, LMFV, LMLV, LSE SLOL*, LSc*

*Requires combined measurement technique

2.5. Models and Transformations

For a framework that aims to analyse MP languages in a language-agnostic manner, we can use
model-driven engineering (MDE) to generalise these MP languages into one analysable model.

Models are abstractions from phenomena in the real world. Programming languages can
also be modelled. Metamodels can abstract away from language-dependent syntax to create an
overarching model (i.e., modelling a programming paradigm). A metamodel is merely a higher
form of abstraction from a model, a blueprint of what the model itself should conform to [31].

To transform a model to another model, model-to-model transformation can be used. This type
of transformation provides a mapping between a source and target model. The transformation is
defined upon the metamodels of the respective models on which the transformation is performed.
Therefore, with several transformations, the model of one MP language can be transformed to a
model of another MP language [31].

We argue that MDE can give us an advantage by being able to transform any MP language
into one abstract model, using transformations. Due to the rapid updates of programming
languages, we argue that the MDE approach will also give us the ability to quickly adapt to
changes and include new versions of programming languages.

3. Related Work

To measure the maintainability of source code, the Software Improvement Group (SIG) has
designed the language-agnostic SIG Maintainability Model [21]. This model measures all sub-
characteristics of maintainability by mapping them to language-agnostic source code metrics.
Using this mapping, they determine the overall maintainability of a source code.



To apply source code analysis, it is useful to use an AST or CFG. There are other tools that
can help for specific languages, such as srcML. srcML is an XML format for the representation
of C/C++/Java source code that wraps source code with information from the AST into a
single XML document. It can be used to perform scalable lightweight fact-extraction and
transformation since other XML tools can be used once it is in the XML form (e.g., XPath and
XSLT) [32]. Another tool for source code analysis is the meta-programming language Rascal
[33]. It can be used for extracting metrics from programming languages and is extendable with
libraries like M3 [34, 35]. The M3 model is a simple and extensible language-agnostic model for
capturing facts about source code for future analysis [34].

With regards to multi-paradigm modelling, Owens [36] describes an extension of GASTM for
the FP paradigm. Functional operations on lists, lambda functions and support for container-less
list of functions and constants are included in the extension. Merging the FP paradigm within
the metamodel will allow a broader set of metrics to be analysed.

4. Proposed Approach

Programming languages have improved over the years and have added a vast amount of new
features. Due to the number of supported features and the fast pace of new developments in
MP languages, it is reasonable to create a language-agnostic code quality assurance framework
based on an iterative approach.

A code quality assurance framework that can apply to more than one multi-paradigm pro-
gramming language has many requirements. It is important to find out what constructs are
present in MP languages to be able to abstract from language-specific implementations. With
extensive knowledge of MP languages and their constructs, we can select the quality character-
istics for our quality assurance framework. With these characteristics known, we can discover
what is required to measure them.

With the metrics and their requirements, we can research how we can use static code analysis
techniques for our framework. It is essential to know what metrics can be used on an AST, which
metrics require the CFG and which metrics require plain source code. A category mapping of
the metrics has been shown in Table 1.

Figure 1 describes the key points in the flow of the quality assurance framework. Every
MP language has their own grammar and way of representing MP concepts. Therefore, every
language will require their own tooling to transform the source code to its language specific AST.
Another transformation is required for transforming the language AST (L-AST) to a generic AST
(G-AST). This transformation maps the relations between the two AST models. To calculate all
metrics in the G-AST, we must know what parts of the AST are required for every individual
metric. When this is known, the code quality metrics can be extracted.

With the extracted metrics, we can evaluate how the framework performs in comparison to
language-specific analyses to determine the feasibility of a language-agnostic quality assurance
framework.



Source Lexical & Syntax
Code analysis

Language AST

L-AST to G-AST
Transformation

Generic AST

Extract AST
metrics

Figure 1: Quality Assurance Framework Flow for any MP language

4.1. Research Questions
While the key points of the framework were captured in Figure 1, much of the details are to be

researched. Therefore, our main research question is:

RQ1: To what extent can a language-agnostic code quality assurance framework be
designed for multi-paradigm languages?

RQ1.1: What are the constructs of multi-paradigm programming languages?
RQ1.2: Which code quality characteristics must the framework capture, and how?

RQ1.3: How can we use static code analysis techniques to measure our selected metrics
in a language-agnostic multi-paradigm manner?

RQ1.4: To what extent can language-specific context be preserved within this frame-
work?

RQ1.5: How does this framework perform in comparison to language-specific analyses?

5. Discussion

In this section, we speculate about possible obstacles that could impede the effectiveness of our
framework design.

One of the goals of the proposed framework is to minimise the amount of effort needed to de-
velop tools in the future. The amount of effort that is required to create a specific transformation
from a MP language to the generic model is unknown. If the creation of such transformations
requires more time than using a language-specific tool, it might defeat the purpose of this



framework.

Besides effort, validity and accuracy is a major concern. The transformation of a specific
MP language to the generic model might lead to many details about the context getting lost in
translation. This will affect the validity and accuracy of the framework.

Every language is designed in a slightly different way and has users that each incorporate
certain paradigms in a different way. One can argue that generalising MP languages as being
equal is not reliable for every specific language. Therefore, comparison with benchmark data of
specific languages will be necessary.

6. Conclusion

The combination of OOP with FP allows developers to be more expressive in their practice but
it can also be a pitfall. Code quality assurance can help monitor the well-being of a source code.
For multi-paradigm languages, it is important to capture the code quality with the combination
of OOP and FP. We have shown an approach for the design of a multi-paradigm code quality
assurance framework. It transforms MP languages into a generic model. This generic model is
used to extract metrics. The metrics need only to be implemented on the generic model, thereby
possibly reducing the amount of effort needed to measure the code quality of any MP language.

References

[1] A.Khanjani, R. Sulaiman, The process of quality assurance under open source software
development, in: 2011 IEEE Symposium on Computers & Informatics, 2011, pp. 548-552.
doi:10.1109/1SCI.2011.5958975.

[2] M.]Jureczko, D. Spinellis, Using Object-Oriented Design Metrics to Predict Software Defects,
volume Models and Methodology of System Dependability of Monographs of System
Dependability, Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw, Poland, 2010,
pp- 69-81.

[3] D. de Champeaux, D. Lea, P. Faure, The process of object-oriented design, in: Conference
Proceedings on Object-Oriented Programming Systems, Languages, and Applications,
OOPSLA ’92, Association for Computing Machinery, New York, NY, USA, 1992, p. 45-62.
URL: https://doi.org/10.1145/141936.141942. doi:10.1145/141936.141942.

[4] C.Ryder, S. Thompson, Software Metrics: Measuring Haskell, in: M. van Eekelen (Ed.),
Trends in Functional Programming, Trends in Functional Programming, Intellect Books,
Bristol, UK, 2005, pp. 1-17. URL: https://kar kent.ac.uk/14265/.

[5] E.Landkroon, Code Quality Evaluation for the Multi-paradigm Programming Language
Scala, Master’s thesis, Universiteit van Amsterdam, 2017.

[6] B. Zuilhof, R. van Hees, C. Grelck, Code Quality Metrics for the Functional Side of the
Object-Oriented Language C#, in: SATToSE, 2019, pp. 1-10.

[7] S.Konings, Source code metrics for combined functional and Object-Oriented Programming
in Scala, Master’s thesis, University of Twente, 2020. URL: http://essay.utwente.nl/85223/.

[8] P. Carbonnelle, PYPL popularity of Programming Language index, https://pypl.github.io/
PYPL.html, 2022. Accessed: 04-07-2022.


http://dx.doi.org/10.1109/ISCI.2011.5958975
https://doi.org/10.1145/141936.141942
http://dx.doi.org/10.1145/141936.141942
https://kar.kent.ac.uk/14265/
http://essay.utwente.nl/85223/
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html

(9]

[10]

[11]

Oracle, What’s New in JDK 8, https://www.oracle.com/java/technologies/javase/
8-whats-new.html, 2022. Accessed: 04-07-2022.

B. Stefan L. Ram, Dr. alan kay on the meaning of “object-oriented programming” (docu-
ment), 2003. URL: https://www.purl.org/stefan_ram/pub/doc_kay_oop_en.

A. Church, A set of postulates for the foundation of logic, Annals of Mathematics 33 (1932)
346-366. URL: http://www jstor.org/stable/1968337.

[12] J. Hughes, Why Functional Programming Matters, Computer Journal 32 (1989) 98-107.

[13]

[17]
(18]

[19]

[25]
[26]

[27]

URL: http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf.

G. Booch, R. Maksimchuk, M. Engle, B. Young, J. Conallen, K. Houston, Object-Oriented
Analysis and Design with Applications, Third Edition, third ed., Addison-Wesley Profes-
sional, 2007.

P. Van Roy, et al., Programming paradigms for dummies: What every programmer should
know, New computational paradigms for computer music 104 (2009) 616-621.

D. A. Spuler, A. S. M. Sajeev, D. A. Spuler, A. S. M. Sajeev, Abstract Compiler Detection of
Function Call Side Effects, 1994.

P. Hudak, Conception, evolution, and application of functional programming languages,
ACM Comput. Surv. 21 (1989) 359-411. URL: https://doi.org/10.1145/72551.72554. doi:10.
1145/72551.72554.

H. H. Barendregt, E. Barendsen, Introduction to lambda calculus, Nieuw archief voor
wisenkunde 4 (1984) 337-372.

S. Pedersen, The impact of Poor Software Quality, 2021. URL: https://www.
buildingbettersoftware.com/blog/the-impact-of-poor-software-quality/.

ISO/IEC 25010, ISO/IEC 25010:2011, Systems and software engineering — Systems and
software Quality Requirements and Evaluation (SQuaRE) — System and software quality
models, Technical Report, ISO/IEC, 2011.

ISO/IEC, ISO/IEC 9126. Software engineering — Product quality, ISO/IEC, 2001.

L. Heitlager, T. Kuipers, J. Visser, A practical model for measuring maintainability, in: 6th
International Conference on the Quality of Information and Communications Technology
(QUATIC 2007), 2007, pp. 30—-39. doi:10.1109/QUATIC.2007.8.

S. Chidamber, C. Kemerer, A metrics suite for object oriented design, IEEE Transactions
on Software Engineering 20 (1994) 476-493. doi:10.1109/32.295895.

W. Li, Another metric suite for object-oriented programming, Journal of Systems
and Software 44 (1998) 155-162. URL: https://www.sciencedirect.com/science/article/pii/
S0164121298100523. doi:https://doi.org/10.1016/S0164-1212(98)10052-3.

A. S. Nutiez-Varela, H. G. Pérez-Gonzalez, F. E. Martinez-Perez, C. Soubervielle-
Montalvo, Source code metrics: A systematic mapping study, Journal of Systems
and Software 128 (2017) 164—197. URL: https://www.sciencedirect.com/science/article/pii/
S0164121217300663. doi:https://doi.org/10.1016/3.jss.2017.03.044.

T. McCabe, A complexity measure, IEEE Transactions on Software Engineering SE-2
(1976) 308-320. d0i:10.1109/TSE. 1976.233837.

X. Rival, K. Yi, Introduction to Static Analysis: An Abstract Interpretation Perspective,
MIT Press, 2020. URL: https://books.google.nl/books?id=96LLDWAAQBA].

V. Zaytsev, A. H. Bagge, Parsing in a Broad Sense, in: J. Dingel, W. Schulte, I. Ramos,
S. Abrahio, E. Insfran (Eds.), Proceedings of the 17th International Conference on Model


https://www.oracle.com/java/technologies/javase/8-whats-new.html
https://www.oracle.com/java/technologies/javase/8-whats-new.html
https://www.purl.org/stefan_ram/pub/doc_kay_oop_en
http://www.jstor.org/stable/1968337
http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf
https://doi.org/10.1145/72551.72554
http://dx.doi.org/10.1145/72551.72554
http://dx.doi.org/10.1145/72551.72554
https://www.buildingbettersoftware.com/blog/the-impact-of-poor-software-quality/
https://www.buildingbettersoftware.com/blog/the-impact-of-poor-software-quality/
http://dx.doi.org/10.1109/QUATIC.2007.8
http://dx.doi.org/10.1109/32.295895
https://www.sciencedirect.com/science/article/pii/S0164121298100523
https://www.sciencedirect.com/science/article/pii/S0164121298100523
http://dx.doi.org/https://doi.org/10.1016/S0164-1212(98)10052-3
https://www.sciencedirect.com/science/article/pii/S0164121217300663
https://www.sciencedirect.com/science/article/pii/S0164121217300663
http://dx.doi.org/https://doi.org/10.1016/j.jss.2017.03.044
http://dx.doi.org/10.1109/TSE.1976.233837
https://books.google.nl/books?id=96LLDwAAQBAJ

(28]

[29]
[30]

[31]

[33]

[34]

Driven Engineering Languages and Systems (MoDELS 2014), volume 8767 of LNCS,
Springer, 2014, pp. 50-67. doi:10.1007/978-3-319-11653-2_4.

K. Bhatt, V. Tarey, P. Patel, K. B. Mits, D. Ujjain, Analysis of source lines of code (SLOC)
metric, International Journal of Emerging Technology and Advanced Engineering 2 (2012)
150-154.

A.V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers: Principles, Techniques, and Tools
(2nd Edition), Addison-Wesley Longman Publishing Co., Inc., USA, 2006.

F. E. Allen, Control flow analysis, SIGPLAN Not. 5 (1970) 1-19. URL: https://doi.org/10.
1145/390013.808479. d0i:10.1145/390013.808479.

M. Brambilla, J. Cabot, M. Wimmer, Model-driven software engineering in practice, second
edition, Synthesis Lectures on Software Engineering 3 (2017) 1-207. URL: https://doi.
org/10.2200/S00751ED2V01Y201701SWE004. doi:10.2200/S00751ED2V01Y201701SWE004.
arXiv:https://doi.org/10.2200/S00751ED2V01Y201701SWE004.

M. L. Collard, M. J. Decker, ]J. I. Maletic, Lightweight Transformation and Fact Extraction
with the srcML Toolkit, in: Proceedings of the 11th IEEE Working Conference on Source
Code Analysis and Manipulation (SCAM), IEEE Computer Society, 2011, pp. 173-184. URL:
https://doi.org/10.1109/SCAM.2011.19. doi:10.1109/SCAM. 2011. 19.

P. Klint, T. van der Storm, J. Vinju, Rascal: A domain specific language for source code
analysis and manipulation, in: 2009 Ninth IEEE International Working Conference on
Source Code Analysis and Manipulation, 2009, pp. 168—177. doi:10.1109/SCAM. 2009 . 28.
B. Basten, M. Hills, P. Klint, D. Landman, A. Shahi, M. J. Steindorfer, J. J. Vinju, M3: A
general model for code analytics in rascal, in: O. Baysal, L. Guerrouj (Eds.), 1st IEEE
International Workshop on Software Analytics, SWAN 2015, Montreal, QC, Canada, March
2, 2015, IEEE Computer Society, 2015, pp. 25-28. URL: https://doi.org/10.1109/SWAN.2015.
7070485. d0i:10.1109/SWAN.2015.7070485.

N. de Groot, Analysing and Manipulating CSS using the M> Model, Master’s thesis,
Universiteit van Amsterdam, Amsterdam, The Netherlands, 2016. URL: http://www.
scriptiesonline.uba.uva.nl/613750.

D. Owens, A generic framework facilitating automated quality assurance across program-
ming languages of disparate paradigms, Ph.D. thesis, Edge Hill University, Ormskirk, UK,
2016. URL: http://repository.edgehill.ac.uk/7778/.


http://dx.doi.org/10.1007/978-3-319-11653-2_4
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/390013.808479
http://dx.doi.org/10.1145/390013.808479
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
http://dx.doi.org/10.2200/S00751ED2V01Y201701SWE004
http://arxiv.org/abs/https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.1109/SCAM.2011.19
http://dx.doi.org/10.1109/SCAM.2011.19
http://dx.doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/SWAN.2015.7070485
https://doi.org/10.1109/SWAN.2015.7070485
http://dx.doi.org/10.1109/SWAN.2015.7070485
http://www.scriptiesonline.uba.uva.nl/613750
http://www.scriptiesonline.uba.uva.nl/613750
http://repository.edgehill.ac.uk/7778/

	1 Introduction
	2 Background
	2.1 Multi-Paradigm Languages
	2.1.1 Object-Oriented concepts
	2.1.2 Functional concepts

	2.2 Code Quality
	2.3 Source Code Metrics
	2.4 Static Code Analysis
	2.4.1 Source Code
	2.4.2 Abstract Syntax Tree
	2.4.3 Control Flow Graph
	2.4.4 Metric Mapping

	2.5 Models and Transformations

	3 Related Work
	4 Proposed Approach
	4.1 Research Questions

	5 Discussion
	6 Conclusion

