
Steps Towards Zero-touch Mutation Testing in Pharo
Mehrdad Abdi1,2, Serge Demeyer1,2

1Universiteit Antwerpen, Middelheimlaan 1, 2020 Antwerpen, België
2Flanders Make, België

Abstract
Mutation testing is injecting artificial faults into the code to assess the written test methods.
Not surprisingly, this process is time-consuming and may take hours and days to complete.
On the other hand, developers, who are busy with different tasks, may find it cumbersome to
run mutation testing in their workstations. In this paper, we propose some steps to develop a
zero-touch mutation testing framework and facilitate employing mutation testing by developers.
We extend MuTalk, the mutation testing framework in the live programming environment of
Pharo, by (1) adding hierarchical mutation operators, (2) integrating it to GitHub-Actions, (3)
visualizing the result in a web-based mutants explorer.

Keywords
Mutation testing, Zero-touch testing, test amplification, Pharo

1. Introduction

Software is everywhere, and its failures cost. Unit testing is writing small test code
snippets that exercise the unit under test and asserts the intended values. In mutation
testing [1], some artificial bugs (mutations) are injected into the unit under test to
evaluate the test suite’s strength. We say the test suite kills the mutant if the injected
bugs are detected. However, if the mutants remain alive, it shows that the test suite
needs improvement.

Pharo [2, 3] is a dynamically typed language with a live programming environment
focusing on simplicity and immediate feedback. The observations from the experiments
in our past work in Pharo were the main motivation for this work. We developed a test
amplification tool, Small-Amp [4], that analyzes the program under test and its test suite
and suggests new test methods to kill some of the mutants. During the experiment, we
noticed that MuTalk, the mutation testing in Pharo, generates too few mutants compared
to the mutation testing framework in Java from another work [5]. Mutation testing in
Pharo generated 1102 mutants for 52 classes (≈21 mutants per class), while there were
7980 mutants in 40 classes in Java (≈200 mutants per class). To the extent that in one
of the cases (TLLegendTest), it failed to generate any mutant despite the class under

BENEVOL 2022, The 21st Belgium-Netherlands Software Evolution Workshop Mons, 12-13 September
2022
Envelope-Open mehrdad.abdi@uantwerpen.be (M. Abdi); serge.demeyer@uantwerpen.be (S. Demeyer)
Orcid 0000-0001-6984-3098 (M. Abdi); 0000-0002-4463-2945 (S. Demeyer)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:mehrdad.abdi@uantwerpen.be
mailto:serge.demeyer@uantwerpen.be
https://orcid.org/0000-0001-6984-3098
https://orcid.org/0000-0002-4463-2945
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

test having 96 lines of code. This observation led us to expand the mutation operator in
MuTalk of which the details come in Section 2.

After adding new mutation operators, we witnessed that the number of times Pharo has
recovered from freezing has increased, and the main reason was entering an infinite loop.
Section 3 explains this problem with an example and how we overcome this problem.

In the next step, we created MuTalkCI as a zero-touch mutation testing for the live
programming environment of Pharo. By default, developers are expected to use MuTalk
manually by loading it in their Pharo image, running it over their project, and waiting
a considerable time to finish. We created a workflow in GitHub-Actions that loads the
project under test and runs a hierarchical mutation testing on it. We call it zero-touch
because the burdensome parts of the process are automated, and the developers’ attention
is needed when the result is ready to be audited. MuTalkCI is explained in Section 4.

Finally, we designed a web-based mutant explorer to stash the mutation coverage
status over the development time (similar to coveralls.io but for mutation testing). Using
this mutant explorer, developers can assess the alive mutants and decide which to kill.
We also equipped some coverage information based on the RIPR model [6, 7, 8, 9, 10]
which helps developers in their assessment. This web interface is bidirectional and allows
the developer to mark the mutants as to be killed, which creates an issue in the repository
on GitHub. The interactive mutant explorer comes in Section 5.

2. Expanding Mutation Operators

Pharo is a pure object-oriented, dynamically typed language based on Smalltalk. It
offers a simple language model: every action in the language is accomplished by sending
messages to objects. In the context of Pharo, the term message sending is used instead of
method invocation. As an example, there is no predefined if statement in the language: it
is implemented as sending the message ifTrue: with a block argument to boolean objects.

Most original operators in MuTalk interchange the known messages with other know
messages [11]. For example, they replace ifTrue: messages with ifFalse:. Other operators
remove the function return operator, remove exception handling blocks, replace a block
with an empty block, or replace the ifTrue: receiver object with true/false objects.

Learned from previous works and other mutation testing frameworks1, we added
the following new mutation operators to MuTalk2. The list is sorted from the most
coarse-grained to the finer operators:

• Extreme transformation. We adopted an extreme transformation operator [12, 13]
that stips the whole body of the test method. In Pharo, these stipped methods
always return their object (^ self). We use this operator as the most coarse-grained
mutation that verifies whether the tests are sensitive to removing all statements
from a covered method or not.

1PIT: https://pitest.org/quickstart/mutators/
2https://github.com/mabdi/mutalk

https://coveralls.io
https://pitest.org/quickstart/mutators/
https://github.com/mabdi/mutalk

• Disabling invocations. As we explained earlier, every action in Pharo is achieved
by sending messages. The message #yourself is a special message that returns the
object itself. We implemented a mutation operator that replaces the sent message
with #yourself to disable an invocation. We use this operator as the second coarse
mutation that verifies whether the tests are sensitive to disabling a statement from
a covered method or not.

• Nullifying the arguments. In this mutation operator, we replace an argument in
a message send node with nil. This operator also verifies whether the tests are
sensitive to disabling an argument in one of the statements.

• Mutating the literals. In this mutation operator, we mutate the literal values.
We use a negation for the Boolean constants, an increase/decrease or zero for the
numerical constants, and replacing with an empty string or a specific predefined
string for the string values.

3. Detecting Infinite Loops

After adding the new operators, we witnessed the number of times Pharo freezes has
increased so that scarcely an execution finishes. The main freezing reason was entering
an infinite loop. Here we explain it using an example. The left code in the Listing 2
shows a method in which the factorial of an integer number is calculated recursively.
The code snippet on the right shows the same method after applying a mutation during
mutation testing analysis. When MuTalk runs the test to verify mutation detection, an
infinite loop happens because the mutation operator disables the conditional statement.
Sometimes, the operating system kills the process by an Out of memory error.

Listing 1: Examples of an infinate loop after mutation testing.

f#=0factorial: a#=0anInt
a#=0anInt == 1 i#=0ifTrue: [^ 1].
^ a#=0anInt ∗ (self f#=0factorial: a#=0anInt −1)

f#=0factorial: a#=0anInt
(a#=0anInt == 1) yourself.
^ a#=0anInt ∗ (self f#=0factorial: a#=0anInt −1)

The occurrence of the infinite loop is not limited to this mutation operator. Other
mutations such as changing the condition to 𝑓 𝑎𝑙𝑠𝑒 (false ifTrue: [^ 1]), or removing the
return operator from the block closure (anInt == 1 ifTrue: [1]) also lead the execution
to an infinite loop.

In a language like Java, the mutation testing framework and the test runner run in
two different processes. As a result, the test runner process fails with a StackOverFlow
error in a similar mutation and is detected effortlessly by mutation testing. However, the
story is different in Pharo because it is a live programming environment. The mutation
testing framework and the test runner run in a shared process called Pharo image. So,
an infinite loop for the test runner means the whole process losses its availability. We
explained this problem in [14].

Figure 1: Hierarchical zero-touch mutation testing for Pharo

To solve this problem, we added an auxiliary statement at the beginning of the mutated
method. This statement counts the number of its executions and throws an exception
that fails the test if it reaches the defined threshold. We exploited the technique used
in the class Halt in Pharo internals for its implementation. Although this technique
significantly decreased the number of freezings, the process still may crash or freeze for
other reasons. We leave recovering from other crashes as future work.

Listing 2: Auxiliary exception for avading infinate loops.
f#=0factorial: a#=0anInt
R#=0RecursionError o#=0onCount: 1024. ”I will go off if executed 1024 times”
(a#=0anInt == 1) yourself.
^ a#=0anInt ∗ (self f#=0factorial: a#=0anInt −1)

4. Zero-touch MuTalk

For using MuTalk, developers should perform some tedious tasks, including installing the
tool on their Pharo image, initializing it, running it over their programs, and waiting
a considerable time to obtain the results. These burdensome steps may hinder MuTalk
from being used regularly. In this part, we propose a zero-touch mutation testing solution
to automate the unnecessary involvement of developers.

Recently, mutation testing has been employed at scale in Google by integrating it into
the build system and using a diff-based probabilistic approach to reduce the number of
mutants [15]. Then in the code-review process, alive mutants are shown to developers,
and they decide to kill or ignore them. In this part, we try to setup a similar process for
Pharo’s open-source projects.

Figure 1 illustrates the proposed hierarchical approach for running MuTalk in the
CI/CD build servers. Similar to recent diff-based mutation testing works [16, 15], when

the workflow is triggered, it automatically finds new changes in the repository since the
last execution. Then it runs a hierarchical analysis:

1. Firstly, it runs a code coverage tool to find the uncovered parts (report number 1:
uncovered methods). If a method is not covered, all its mutants will survive, so we
do not need to run mutation testing on it. So, we exclude all uncovered parts from
the following analysis.

2. Then, a light mutation testing is executed (report number 2: undetected extreme
transformations). In our implementation, we only use the extreme transformation
operator. Similarly, if an extreme mutation on a method is not detected, we exclude
it from the next analysis.

3. In the third step, a more detailed mutation testing, including all remained operators,
is executed on the parts detected by the previous step, and report number 3 is
formed.

Based on the RIPR model [6, 7, 8, 9, 10], we know that a mutant is killed when it
is reached by a test (reachability); the program state is different from the state in the
original version at that point (infection); the infected change is propagated to the state of
the test (propagation); finally, the change is revealed by an assertion statement (reveal).

To help developers to kill the mutant manually, we provide two types of coverage status
for alive mutants: the list of tests covering each alive mutant and the list of tests having
a propagated change (report number 4). The tests covering a mutant are start points for
manual investigations on how to kill a mutant. A method with a propagated change is
also interesting for developers because it says that developers can kill the mutant only by
adding an oracle statement to assert the state change caused by the mutation.

We developed a GitHub-Actions workflow3 that runs MuTalk, and exports the reports
as json outputs. The outputs are sent to the mutants explorer API (See Section 5) using
GitHub’s authenticated account token. We use GitHub-Actions because most of Pharo’s
projects currently are hosted on GitHub, and it is freely available for all open-source
projects.

5. Mutants Explorer

Since interpreting the reports generated in Section 4 may be cumbersome, we designed
a web-based mutant explorer4. The explorer keeps the history of all builds (similar to
coveralls) and visualizes mutants and their coverage status. Furthermore, it is interactive
and allows developers to assess the mutants and decide whether they should be killed or
ignored. If they decide a mutant to be killed, the explorer adds an item to a GitHub
issue related to this build in the repository.

Figure 2 shows an example issue to remind the developer how to kill the mutant
manually. The left figure is a mutant shown to the developer in which the mutated

3https://github.com/mabdi/smalltalk-SmallBank/blob/master/.github/workflows/mutalkCI.yml
4https://github.com/harolato/mutation-testing-coverage

https://coveralls.io
https://github.com/mabdi/smalltalk-SmallBank/blob/master/.github/workflows/mutalkCI.yml
https://github.com/harolato/mutation-testing-coverage

Figure 2: A mutant view and its generated issue

part is displayed as a diff view on top. Then test methods covering this method are
listed. In this example, we see that testWithdraw not only covers the method (the first
green block), but the state change from this mutant is propagated to its context (second
green block). Using this report, developers understand that they can add an assertion
statement to this test method to verify the method’s return value withdraw: and kill
the mutant. They can click the FIX button to add an issue (right figure) to the GitHub
repository. Using GitHub’s REST APIs and the user’s token obtained with oAuth, the
web interface creates an issue per build and appends all items to fix. Developers can
refer to this issue later and amplify their tests manually by adding new test methods or
updating their existing tests.

6. Conclusion and Future work

In this paper, we propose an approach to creating a zero-touch mutation testing framework
with: (1) adding new mutation testing operators to MuTalk and use an approach to
identify the infinite loops and evade freezings; (2) developing a zero-touch mutation
testing to automate burdensome tasks by implementing a GitHub-Actions workflow that
loads the project under test and MuTalk, and runs a mutation testing process; (3) the
outputs are sent to a mutant explorer in which the history of mutations is recorded and
allows developers to assess mutants and mark them as to be fixed. The assessments are
collected in a GitHub issue that developers can refer to in the future to amplify the tests
manually.

In future work, the system will be run in practice, and a user study will be conducted
to evaluate it.

Acknowledgments

This work is supported by (a) the Fonds de la Recherche Scientifique-FNRS and the Fonds
Wetenschappelijk Onderzoek - Vlaanderen (FWO) under EOS Project 30446992 SECO-ASSIST
(b) Flanders Make vzw, the strategic research centre for the manufacturing industry.
Mutant explorer is developed by Haroldas Latonas.

References

[1] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, M. Harman, Chapter six
- mutation testing advances: An analysis and survey, volume 112 of Advances in
Computers, Elsevier, 2019, pp. 275–378. URL: https://www.sciencedirect.com/science/
article/pii/S0065245818300305. doi:https://doi.org/10.1016/bs.adcom.2018.03.015.

[2] O. Nierstrasz, S. Ducasse, D. Pollet, Pharo by Example, Square Bracket Associates,
c/o Oscar Nierstrasz, 2010.

[3] A. Bergel, D. Cassou, S. Ducasse, J. Laval, Deep Into Pharo, Square Bracket
Associates, 2013. URL: http://books.pharo.org/deep-into-pharo/.

[4] M. Abdi, H. Rocha, S. Demeyer, A. Bergel, Small-amp: Test amplification in a
dynamically typed language, Empirical Software Engineering 27 (2022) 128. URL:
https://doi.org/10.1007/s10664-022-10169-8. doi:10.1007/s10664-022-10169-8.

[5] B. Danglot, O. L. Vera-Pérez, B. Baudry, M. Monperrus, Automatic test improvement
with dspot: a study with ten mature open-source projects, Empirical Software
Engineering, Springer Verlag (2019).

[6] N. Li, J. Offutt, Test oracle strategies for model-based testing, IEEE Transactions
on Software Engineering 43 (2017) 372–395. doi:10.1109/TSE.2016.2597136.

[7] O. L. Vera-Pérez, B. Danglot, M. Monperrus, B. Baudry, Suggestions on test suite
improvements with automatic infection and propagation analysis, arXiv preprint
arXiv:1909.04770 (2019).

[8] L. J. Morell, A theory of fault-based testing, IEEE Transactions on Software
Engineering 16 (1990) 844–857.

[9] R. A. DeMillo, A. J. Offutt, et al., Constraint-based automatic test data generation,
IEEE Transactions on Software Engineering 17 (1991) 900–910.

[10] J. M. Voas, Pie: A dynamic failure-based technique, IEEE Transactions on software
Engineering 18 (1992) 717.

[11] H. Wilkinson, N. Chillo, G. Brunstein, Mutation testing, 2009. European Smalltalk
User Group (ESUG 09). Brest, France. http://www.esug.org/data/ESUG2009/Friday/
Mutation_Testing.pdf.

[12] R. Niedermayr, E. Juergens, S. Wagner, Will my tests tell me if i break this code?,
in: 2016 IEEE/ACM International Workshop on Continuous Software Evolution
and Delivery (CSED), IEEE, 2016, pp. 23–29.

[13] O. L. Vera-Pérez, B. Danglot, M. Monperrus, B. Baudry, A comprehensive study of
pseudo-tested methods, Empirical Software Engineering 24 (2019) 1195–1225. URL:
https://doi.org/10.1007/s10664-018-9653-2. doi:10.1007/s10664-018-9653-2.

https://www.sciencedirect.com/science/article/pii/S0065245818300305
https://www.sciencedirect.com/science/article/pii/S0065245818300305
http://dx.doi.org/https://doi.org/10.1016/bs.adcom.2018.03.015
http://books.pharo.org/deep-into-pharo/
https://doi.org/10.1007/s10664-022-10169-8
http://dx.doi.org/10.1007/s10664-022-10169-8
http://dx.doi.org/10.1109/TSE.2016.2597136
http://www.esug.org/data/ESUG2009/Friday/Mutation_Testing.pdf
http://www.esug.org/data/ESUG2009/Friday/Mutation_Testing.pdf
https://doi.org/10.1007/s10664-018-9653-2
http://dx.doi.org/10.1007/s10664-018-9653-2

[14] M. Abdi, H. Rocha, S. Demeyer, Reproducible crashes: Fuzzing pharo by mutating
the test methods, in: International Workshop on Smalltalk Technologies, IWST,
2020.

[15] G. Petrović, M. Ivanković, State of mutation testing at google, in: Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice, ICSE-SEIP ’18, Association for Computing Machinery, New York, NY,
USA, 2018, p. 163171. URL: https://doi.org/10.1145/3183519.3183521. doi:10.1145/
3183519.3183521.

[16] W. Ma, T. Laurent, M. Ojdanić, T. T. Chekam, A. Ventresque, M. Papadakis,
Commit-aware mutation testing, in: 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, 2020, pp. 394–405.

https://doi.org/10.1145/3183519.3183521
http://dx.doi.org/10.1145/3183519.3183521
http://dx.doi.org/10.1145/3183519.3183521

	1 Introduction
	2 Expanding Mutation Operators
	3 Detecting Infinite Loops
	4 Zero-touch MuTalk
	5 Mutants Explorer
	6 Conclusion and Future work

