
UML and Box-and-Line Diagrams in Software
Design Comprehension

Satrio Adi Rukmono
Mathematics and Computer Science
Eindhoven University of Technology

Eindhoven, The Netherlands
email: s.a.rukmono@tue.nl

Michel R. V. Chaudron
Mathematics and Computer Science
Eindhoven University of Technology

Eindhoven, The Netherlands
email: m.r.v.chaudron@tue.nl

Abstract—Graphical models of software systems are used for
understanding a system in communication between stakeholders
as well as a blueprint used for a system’s construction. Visual
explanations serve as a concrete reference regarding the behavior,
causality, and function of the system. However, whilst there is
often agreement that a visual representation of a system is much
clearer and more understandable than a textual description, there
is little research regarding how standardised models, such as
UML, and non-standardised box-and-line diagrams differ in their
effectiveness of conveying software system design. We seek to
find if there are any considerable differences in the effectiveness
of UML compared to box-and-line diagrams in software design
comprehension.

Index Terms—uml, diagrams, software design comprehension,
software architecture recovery

I. INTRODUCTION

Graphical models of software systems are used for under-
standing a system, in communication between stakeholders,
as well as a blueprint used for a system’s construction. There
is much to be said about the advantages of a graphical
representation of a system. Bobek et al. [1] assert that vi-
sual explanations serve as a concrete reference regarding the
behaviour, causality, and function of the system. However,
whilst there is often agreement that a visual representation
of a system is much clearer and more understandable than
a textual description [2], [3], there is little research regarding
how standardised models, such as UML, and non-standardised
box-and-line (B&L) diagrams differ in their effectiveness of
conveying software system design.

According to the encoder/decoder model of communica-
tion [4], [5], a receiver of a message needs to employ a
decoder that is “compatible” to the sender’s encoder for
a communication to be successful. While this model was
created in the context of technology-assisted communication,
the core idea holds true for broader types of communication. In
communicating software design using diagrams, for example,
it is not hard to argue that a convention of what each symbol
in the diagram represents will help the communicating parties
understand the system of interest more easily. This is the
premise behind the standardisation of modeling languages.
However, in practice, non-standardised box-and-line diagrams
are also used, either in place of or in conjunction with
the standardised ones. Sometimes architects and developers

sketch rough box-and-line diagrams on a whiteboard during
discussion and then take a picture of it to send to their
teammates. But their use does not seem to stop with informal
setting as, for example, both volumes of The Architecture of
Open Source Applications (AoSA) [6], [7] are littered with
such diagrams as shown in Figure 1. The reasoning behind
their use seems to fall on their simplicity and flexibility. In
our teaching experience, students often wonder if people in
real life use UML due to the perceived complexities of having
to understand the meaning of many different symbols. From
this phenomenon, we seek to find if there are any considerable
differences in the effectiveness of UML compared to box-and-
line diagrams in software design comprehension.

II. OBJECTIVES

The difference of effectiveness between the two diagram
types in conveying information about software design are
not obvious. While using standardised models helps in pro-
viding baseline understanding of design elements, there may
be differences in the dominating type of cognitive load in
accomplishing the task [8]. The objective of our study is to
analyse the effectiveness of UML and box-and-line diagrams
from the point of view of software engineers in the context of
communicating software architecture design.

We formulate the following research question:
RQ Is either UML or B&L diagram better than the other

at conveying software architecture design?
To approach this question and understand the reasoning, we

define the following sub-questions:
RQA Which aspects of software architecture design are

better communicated using either type of diagram?
RQB What is the difference, if any, in the cognitive load

involved in the task of comprehending software ar-
chitecture design using the two types of diagram?

III. CONSIDERATIONS AND SCOPING

We take the following items as consideration for scoping
our study and developing the diagrams and questions that we
are going to use in the study.

Design aspects and architecture views. We are considering
to include logical, behavioral, and execution/deployment view
of the system in question.



(a) The Bourne-Again Shell (bash).

(b) SocialCalc.

Fig. 1: Non-standardized architecture diagrams of two differ-
ent applications as depicted in AoSA vol. I [6].

Standardised meaning or semantics of diagram ele-
ments. Boxes and lines in box-and-lines diagram do not have
standardised semantics. As such, we need to be mindful of the
intended vs. perceived meaning of the diagrams we show to
the study participants.

Textual companion. Diagrams are usually complemented
by textual descriptions in design documents.

Mixing views. Diagrams sometimes mix abstractions or
views.

Levels of abstraction. Different diagrams target different
level of abstraction or detail.

Domain knowledge. To avoid bias, we plan to take a
domain that is likely to be either reasonably familiar to all
participants, or not familiar to most.

IV. EXPERIMENT DESIGN

We plan to conduct the study in an online setting. Partici-
pants will be asked to answer questionnaire forms accessible
via a web browser. The driving force of this method are ease
of distribution and simpler logistics, possibility for reaching
diverse participants, and immediacy of results for analysis.

Participants will first be asked to fill out a pre-questionnaire
to understand their profile, including questions about their edu-
cational and professional background, age, gender, nationality,
native language, and their preference and self-assessment of
skills relating to both diagram types. This aims to understand
the risk of bias involved for generalising the result of this
study.

Each participant will be presented with two sets of design
diagrams for two different systems accompanied with some
textual description of the systems. Next, they will be asked
to answer questions about the two systems. The questions
will be designed around categories derived from the 4+1 view
of architecture [9]. There may be more than one category of
questions for each architecture view. Participants will not be
made aware of this categorisation.

Afterwards, participants will be asked to fill out a post-
questionnaire that measures the cognitive load of the design
comprehension task. This post-questionnaire adopts the instru-
ment for measuring different types of cognitive load devised
by Leppink et al. [10].

A. Treatment Groups

We plan to split the participants into two to four treatment
groups. The first two groups will be given different types
of diagrams for each system they need to examine. We will
call the systems A and B, and therefore the first group will
receive UML diagram of system A and B&L diagram of
system B. The second group will receive the opposite, i.e,
B&L diagram of system A and UML diagram of system B.
In a preliminary study using this treatment, we found that the
performance scores for the second system (the B system) are
lower that the first system (the A system), despite both having
comparable size and complexity. To better understand this,
we are considering two options in refining the experiment.
The first is to include two more treatment groups, each only
receiving one type of diagrams for both systems. That is,
the third group will receive UML diagrams of both system
A and B, and the fourth group will receive B&L diagrams
for both systems. The second option is to use the original
two treatment groups but add more systems, C and D, with
alternating diagram types as in the original systems A and B.
Figure 2 illustrates these alternatives.

B. Participants

We are populating a list of candidates to participate in
the study. Currently, the list includes software engineering
students of different levels (bachelor’s, master’s, PhD’s, and
engineering doctorates) and professionals in software engi-
neering industry. The candidates come from different coun-
tries, including Indonesia, Malaysia, Netherlands, Slovakia,



Participants

B&L - A UML - A

B&L - BUML - B

Pre-Questionnaire

Post-Questionnaire

T1 T2

(a) Initial plan.

Participants

B&L - A UML - A

B&L - BUML - B

Pre-Questionnaire

Post-Questionnaire

T1 T2

B&L - A

B&L - B

UML - A

UML - B

T3 T4

(b) Alternative I.

Participants

B&L - A UML - A

B&L - BUML - B

Pre-Questionnaire

Post-Questionnaire

T1 T2

B&L - C UML - C

B&L - DUML - D

(c) Alternative II.

Fig. 2: Treatment group alternatives.

Sweden, and Uganda, unavoidably with different levels of
English language fluency.

We discern the apparent difference in how people with
different genders think, as popularly suggested by Pease &
Pease’s book Why Men Don’t Listen & Women Can’t Read
Maps [11], to have a possible impact on how someone
navigates software design diagrams. However, the candidate
list that we currently have is dominated by males. We seek to
diversify this for better representations before conducting the
study.

C. Variables

The study will involve variables as described in Table I. As
previously mentioned, question categories will be derived from
the 4+1 view of software architecture, that includes logical,
process, development, and physical views as well as scenarios.
Diagram types are split into two groups, UML and B&L. We
have not decided on which types of UML diagrams we should
include, but at the very least it should include class diagrams
as it is one of the most prominent type of UML diagram.

The three variable categories concerning participants will
be gathered using the questionnaires.

REFERENCES

[1] E. Bobek and B. Tversky, “Creating visual explanations improves
learning,” Cognitive research: principles and implications, vol. 1, no. 1,
pp. 1–14, 2016.

[2] R. Jolak, M. Savary-Leblanc, M. Dalibor, A. Wortmann, R. Hebig,
J. Vincur, I. Polasek, X. Le Pallec, S. Gérard, and M. R. Chaudron,
“Software engineering whispers: The effect of textual vs. graphical soft-
ware design descriptions on software design communication,” Empirical
Software Engineering, vol. 25, no. 6, pp. 4427–4471, 2020.

TABLE I: Experiment variables.

variable type source

Question Characteristics
1. Question category nominal experiment design
2. Diagram type nominal experiment design

Participant Characteristics
3. Educational background ordinal pre-questionnaire
4. Experience ordinal pre-questionnaire
5. Modeling skills interval pre-questionnaire
6. English language fluency nominal pre-questionnaire
7. Gender nominal pre-questionnaire

Participant Scores
8. Score for UML ratio questionnaire grading
9. Score for B&L ratio questionnaire grading

10. Time per question ratio questionnaire timestamp

Participant Cognitive Load
11. Extraneous processing interval post-questionnaire
12. Essential processing interval post-questionnaire
13. Generative processing interval post-questionnaire

[3] B. Tversky, “Multiple models. in the mind and in the world,” Historical
Social Research/Historische Sozialforschung. Supplement, no. 31, pp.
59–65, 2018.

[4] C. E. Shannon, The mathematical theory of communication, by CE
Shannon (and recent contributions to the mathematical theory of com-
munication), W. Weaver. University of illinois Press Champaign, IL,
USA, 1949.

[5] C. Meinel and H. Sack, Digital communication: Communication, mul-
timedia, security. Springer Science & Business Media, 2014.

[6] A. Brown and G. Wilson, The Architecture of Open Source Applications:
Elegance, Evolution, and a Few Fearless Hacks. Lulu, 2011, vol. 1.

[7] ——, The Architecture of Open Source Applications, Volume II: Struc-
ture, Scale, and a Few More Fearless Hacks. Lulu, 2012, vol. 2.

[8] R. E. Mayer, Multimedia Learning, 3rd ed. Cambridge University Press,
2020.

[9] P. B. Kruchten, “The 4+ 1 view model of architecture,” IEEE software,
vol. 12, no. 6, pp. 42–50, 1995.

[10] J. Leppink, F. Paas, C. P. Van der Vleuten, T. Van Gog, and J. J.
Van Merriënboer, “Development of an instrument for measuring different
types of cognitive load,” Behavior research methods, vol. 45, no. 4, pp.
1058–1072, 2013.

[11] A. Pease and B. Pease, Why Men Don’t Listen & Women Can’t Read
Maps: How to spot the differences in the way men & women think.
Hachette UK, 2016.


