
An empirical study of async wait flakiness in
front-end testing
Yu Pei1, Sarra Habchi2, Renaud Rwemalika1, Jeongju Sohn1 and Mike Papadakis1

1University of Luxembourg, Luxembourg
2Ubisoft, Montreal, Canada

Abstract
Automated front-end regression testing is an essential part of web development, allowing fast release
cycles while maintaining high-quality requirements. However, due to the asynchronous nature of web
applications, front-end testing is sensitive to Async Wait flakiness which reduces the usefulness of such
test suites by introducing false alarms. In this work, we conducted an empirical study to investigate the
causes and the impact of Async Wait flakiness in front-end testing. To do so, we build a dataset of 62
tests exhibiting reproducible Async Wait flakiness associated with a clean fix commit, which becomes
the foundation of our study. Our preliminary results suggest that tests relying on an explicit time to
wait in order to synchronize the tests tend to create more flakiness (38 instances) than synchronizing on
the status of DOM elements (24 instances).

Further study shows that where time-based issues are typically addressed by increasing the time
to wait, DOM-based issues are resolved by actually introducing a missing synchronization point. We
conclude our study with an analysis of the different implementations of synchronization mechanisms to
provide tool manufacturers with concrete insights on how to improve their solutions.

Keywords
front-end testing, async wait, flaky tests, empirical study

1. Introduction

To remain competitive, companies are required to adapt to new business requirements in
a timely fashion and fix potential defects or vulnerabilities as soon as they are detected to
minimize any negative impact on their consumer base. As such, time to deployment has to
be reduced to its minimum without compromising on the quality of the product shipped to
production. To address these potentially conflicting requirements, software producers largely
adopted automation testing to ensure the quality of the software they deploy. This practice
has proven to be efficient at improving software quality[1] and allowing for rapidly finding
vulnerabilities[19].

Regression testing is one of the software testing practices typically adopted by software-
producing companies[20]. It ensures that the system under test (SUT) still functions as expected
after any code changes. To achieve this goal, every time a developer makes a change to the SUT,
the regression test suite is executed against the SUT. If any of the tests fail, it is an indication

Envelope-Open yu.pei@uni.lu (Y. Pei); sarra.habchi@ubisoft.com (S. Habchi); renaud.rwemalika@uni.lu (R. Rwemalika);
jeongju.sohn@uni.lu (J. Sohn); michail.papadakis@uni.lu (M. Papadakis)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:yu.pei@uni.lu
mailto:sarra.habchi@ubisoft.com
mailto:renaud.rwemalika@uni.lu
mailto:jeongju.sohn@uni.lu
mailto:michail.papadakis@uni.lu
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

that the newly introduced change broke a requirement exercised by the test suite. However, this
signal may contain noise, or false alarms, where some tests fail even though their requirements
are actually met. As a result, builds fail where they should have actually passed, increasing not
only the time to market but also production cost. This effect is even more pronounced in the
case the failures are non-deterministic.

In the past years, researchers have increased their efforts to address non-deterministic
test failures, also known as flaky test[2][3][4][5]. A flaky test script is one that might non-
deterministically pass or fail on the same test code, resulting in different outcomes in different
runs with no changes[6][7]. To detect flaky tests, the majority of the proposed solutions rely
on test rerun where a test script is executed a certain number of times and is marked as flaky if
the outcome differs in at least one execution[21].

Detecting flaky tests is an important challenge as they bring many problems:

1. Increase the debugging cost. Suppose the developer does not know that the test is flaky.
The developer might try to spend plenty of time debugging only to find the observed test
failure is not due to the recent changes but due to a flaky test.[7] Flaky tests often require
hours or even days to debug. As Gruber et al.[22] explain, it takes approximately 170
runs of a test case to determine with certainty whether a test is flaky.

2. Undermine developers’ trust in testing. The inconsistencies in the test results of flaky
tests over given code changes can cause developers to lose faith in the tests themselves.

3. Hide real bugs. If a flaky test fails randomly, developers tend to ignore its failures and
thus might miss real bugs[9]. It is thus important to determine whether a test has become
flaky.

Due to the effects of flakiness and flakiness that can come from the test itself, researching
flakiness in front-end testing can help developers by providing insight into effective detection
and prevention methods. In this work, we focus our investigation on regression tests that are
targeting the user-facing layer of the web applications; we refer to this type of test as front-end
tests. Our preliminary investigation on front-end testing shows that flaky test failure often
occurs under the following four circumstances:

• Interact with Document Object Model (DOM). DOM represents a web page. Depending on
our test script, it can become flaky when there is an update to the DOM’s style, structure,
and content. It occurs when our test suite attempt to interact with elements in the DOM
that do not render consistently.

• Render resources. Flaky tests in this category attempt to perform an action on a User
Interface (UI) component or UI resources before resources are fully rendered.

• Transition and Animation. Animations cause the component to be highly time sensi-
tive[14]. Due to the sensitivity of animation scheduling, judging the progress of an
animation based on an element’s state can lead to problems.

• User interface. Front-end testing is an interactive testing process that includes diverse
user interactions, such as keyboard input events, mouse click events, etc. This diversity
in interactions may produce unexpected flaky test failures.

The four potential circumstances for flakiness identified by our preliminary study show
a strong predominance of the Async Wait category defined by Luo et al.[9]. Note that this
category is not only prevalent in front-end testing. Indeed, Romano et al.[14] collected commit
data to analyze, and they discovered that 45% of them fell into the Async Wait category. As
such, this paper focuses on the Async Wait category of flakiness, which we refer to as Async
Wait flakiness in the remainder of this paper, and aims at providing a deeper understanding of
the causes of flakiness as well as providing developers with useful information to address this
issue.

To do so, we carry out an empirical investigation on the Async Wait flakiness in front-
end testing, to provide a better understanding of flakiness in web applications. We collected
flaky test cases from GitHub written in JavaScript and conduct our analysis. We specifically
searched GitHub for web apps and searched for flaky test-relevant commits using the keywords
”async, wait, timeout”, ”flaky” and ”flakiness”. We discovered 62 commits in 26 web projects by
manually reviewing the retrieved changes. We investigated the root cause and fixed the strategy
of flakiness by analyzing each commit. By identifying the causes and fixing strategies for front-
end flaky tests, our study intends to determine if our proposed characterization of flakiness
varies from those researches on general software systems and if there are domain-specific
flakiness patterns.

The main contributions of this study are as follows:

1. We investigated the main causes and fixing strategies behind tests exhibiting Async Wait
flakiness.

2. We derive a reproducible dataset of 26 projects with 62 tests exhibiting Async Wait
flakiness.

3. We compare fixing strategies for Async Wait flakiness from different testing frameworks.
We investigate the relationship between the characteristics of different synchronization
mechanisms, such as their respective ease of use and the likelihood of inducing Async
Wait flakiness.

4. Our study provides developers and tool manufacturers with insights on the potential
introduction of Async Wait flakiness.

2. Related work

Researchers have studied flaky tests and proposed several approaches to classify, identify, and
fix flaky tests. Vahabzadeh et al.[13] carried out a comprehensive quantitative and qualitative
study on test bugs, which are problems that might cause a test to fail or pass depending on
whether or not the test code is right. Researchers identified three major causes of semantic
bugs, flaky tests, and environmental bugs. Luo et al.[9] introduced ten major causes of flakiness
(e.g., Async Wait, Concurrency, Test Order Dependency). Gao et al.[10] conducted a study that
concluded that reproducing flaky tests can be difficult.

Although we focus on front-end tests, our experience has been similar. Among these works,
we find some that try to understand the reasons for flakiness and identify the causes from
developers[8]. Lam et al.[11] study the lifecycle of flaky tests in large-scale projects at Microsoft

by focusing on the timing between flakiness reappearance and the time to fix the flakiness.
Terragni et al.[12] proposed a technique to run flaky tests in multiple containers with different
environments simultaneously. As summarized in Romano et al.[14], flakiness problems are
caused by a high diffusion of the Async Wait category, which happens when a test script makes
asynchronous calls without waiting for the results.

Moreover, there are many works with different goals from ours that propose techniques and
tools to diagnose flaky test scripts[15] or detect them in a test suite[16] or fix the flaky tests[17].
To prevent and mitigate the negative impact of flaky tests during the web testing workflow, we
focus our attention on the async wait flaky test, since this type of problem is one of the main
causes of web testing flakiness. We aim to advance the state-of-the-art in the field of research
by providing valuable insights.

3. Methodology

3.1. Research Question

Our first research question regards the origin of Async Wait flakiness. More specifically, we
aim to define a finer-grain nomenclature to classify Async Wait flakiness based on its origin.
Thus, we ask:

RQ1 What are the main root cause categories behind Async Wait flakiness?

To answer this question we collected 26 projects with 62 flaky tests where all tests are related
to Async Wait flakiness. Each test makes at least one asynchronous call or asynchronous wait
and passes if it completes on time, but fails if it ends too early or too late. Then, we investigate
each test by analyzing its associated commits to explore the main causes of flakiness and fixing
strategies employed to remove it. Different from prior work, our research tries to reveal the
main causes behind AsyncWait flakiness in front-end tests. To do so, we formulate the following
research question:

RQ2 How do developers fix with Async Wait flakiness?

To understand how developers identify and fix Async Wait flakiness, we look into the
changeset between the flaky and fixed versions of the test. Additionally, we study how to
effectively pick synchronization mechanisms to minimize the test execution time. Finally, the
last step of our endeavor regards the capabilities offered by different testing frameworks. More
specifically, we ask:

RQ3 How do developers use different test frameworks to handle Async Wait flakiness?

With this research question, we intend to examine whether or not actions to fix Async Wait
flakiness are consistent across different testing frameworks. As such, we classify the type of
changes performed within the tests relying on each framework and extract utilities provided by
the frameworks to help developers to avoid Async Wait flakiness.

3.2. Data Collection

To identify commits that likely fix flaky tests, we choose to search open-source projects on
GitHub. During this process, we follow a procedure similar to the one used in Luo et al.[9]. We
search for the keywords ”web testing”, “flaky”, and “flakiness” in commits and projects written
in JavaScript. When executing this query against the Github Search API, over 600 web projects
are initially returned as a result. To ensure the projects are related to Async Wait flakiness
in front-end tests, a second filter[14] is performed using the keywords ”UI”, ”DOM”, ”async”,
”await”, ”delay”, ”timeout”.

Next, we proceed to a manual analysis in order to identify the commits that are modifying
test code and isolate the commits related to fixing flaky tests. As a result, we identify roughly
200 projects with commits potentially fixing Async Wait flakiness. To validate this step and
guarantee that the tests are flaky, we ensure that the flakiness is reproducible. Therefore, we
clone the projects from GitHub and rerun the tests which were modified by the commit we
isolated in the previous step. To capture the flakiness, we execute each suspicious test 20 times;
we label a test to be flaky if any of its execution results in a different outcome. This manual
inspection, followed by rerunning the suspicious tests, resulted in 62 tests from 26 web projects
being collected in the dataset.

The collected dataset in this study differs from those of previous studies in three perspectives.
First, the flaky tests in our dataset are all reproducible from the way they were collected. Second,
unlike the previous flaky test datasets containing various flaky tests, ours targets a specific
direction that we only focus on, namely, Async Wait flakiness in the front-end test code. Third,
each flaky test is associated with a fixed commit that can be analyzed to extract the fine-grained
root cause of flakiness.

3.3. Study setup

RQ1 What are the main root cause categories behind Async Wait flakiness?

Tests can be flaky due to an async wait issue, where an asynchronous call is made or an
asynchronous await is performed, but the result is not properly waited for before using it. In
the context of testing a web application, async failures may occur when the application runs an
asynchronous operation that must be completed before the application state or UI is ready to
be tested. Without the appropriate synchronization mechanism between the test and the SUT,
during its execution, the test may perform assertion or interact with elements of the web page
that are not yet available. Thus, in addition, to collecting flaky tests, we also want to provide
explanations for the observed non-deterministic behavior and explore the main causes of async
wait flakiness in web front-end tests.

We manually analyze each test and review the test code and developers’ fixes to assign each
test to a category. In addition, we rerun each test code to get error messages, part of the cases
are flakiness caused by time issues, and other parts of the cases are element-related, such as
that the element does not exist, etc. Moreover, DOM and time are often the primary concerns
of developers and testers when it comes to web front-end testing since they directly influence
how web pages display and load.

Table 1
Summary of Cause Categories

Categories Description of causes Number of tests

DOM-related DOM rendering and usage 24
Time-related Insufficient waiting time or exceeded time limit 38

Indeed, we identify two categories based on the call performed by the test at the fixed
location: (1) time-related, such as ”await page.waitForTimeout()” or ”await wait()” where the
synchronization point is an explicit amount of time; and (2) DOM-related, such as ”await
page.waitForSelector()” where the synchronization point depends on the rendering state of a
specific DOM element. This definition allows us to determine if the fix actions are DOM-related
or time-related. For example, directly extending the wait time is associated with a time-related
fix and the introduction of a method to wait for elements to be rendered is associated with a
DOM-related fix.

Note that this classification is already used in the literature and by practitioners. Spadini
et al.[23] relying on developers’ perception to create a classification of test smell severity,
mentioned that using time-related locators, i.e. sleepy test, might introduce flakiness. This
observation is corroborated by practitioners from the industry where developers believe that a
good front-end testing framework should avoid using explicit thread waiting for the sake of
system stability[18][24]. This is why, relying on the asynchronous instability reasons proposed
by previous work, we have carried out two-class categorization, one is DOM-related, and
the other is time-related. We describe those categories in Table 1. Based on the results of our
analysis, we can quickly classify AsyncWait flakiness and propose an appropriate repair method
for each cause.

RQ2 How do developers fix with Async Wait flakiness?

We manually analyze all the fixes introduced by the developers by reviewing the comments
and the changeset of each commit. First, we clean the changeset to remove any changes
unrelated to fixing flakiness such as refactoring operations. Then, we analyze the fine-grained
changes to discover what contributes to the flakiness of the test suite.

For example, in the absence of the ”waitFor” method in the test code which takes a DOM
element as an attribute, to fix flakiness, a DOM-based synchronization point is introduced. DOM-
related fixes are typically performed by introducing method calls such as ”waitForElements” or
”waitForBeTrue”. Thus, during the manual analysis, we extract actions consisting of insetting
these methods.

Code snippet 1

1 async () => {
2 - expect(connection.streams).to.have.length(0)
3 + await pWaitFor(() => connection.streams.length === 0)
4 }

For instance, code snippet 1 shows the introduction of a wait for true condition method, to
offer a DOM-based synchronization point for the test. Another example can be found in the
Shopify-theme-inspector project (code snippet 2) where the developer directly adds the method
to wait until the element renders before executing the assertion.

Code snippet 2

1 async () => {
2 await page.$eval('[data-refresh-button]', elem => elem.click());
3 + await page.waitForSelector('.d3-flame-graph')
4 }

On the other hand, time-related fixes are typically solved by increasing the time attribute
(code snippet 3) or by adding an explicit wait call. We observe that most flaky behavior occurs
due to a short timeout caused by elements waiting for results or callbacks being delayed.

Code snippet 3

1 it("should see loaded profiles on the team page", function () {
2 cy.visit("/team");
3 - cy.wait(250);
4 + cy.wait(1000);
5

6 expect(cy.data("contributor-handle-GithubPerson")).to.exist;
7 });

To conclude, our preliminary results suggest that developers use different strategies for fixing
Async Wait flakiness depending on whether it is time-based or DOM-based. In order to solve
DOM-related flakiness, they usually introduce a synchronization point on a specific DOM
element, whereas for time-related flakiness, they usually add or extend the waiting time.

RQ3 How do developers use different test frameworks to handle Async Wait flakiness?

In order to compare the performances of the frameworks used to exercise the tests of our
dataset, we extract from the repository the dependencies from the build configuration (pack-
age.json). Table 2 shows the outcome of this process and suggests that our dataset is composed
of four test automation frameworks. For each testing framework, we build an exhaustive list of
the Synchronization Mechanism Methods (SMM) provided by the framework; for each SMM
from this catalog, we compute code metrics associated with the ease of use and the way they
interact with the SUT. Analyzing the entirety of the tests from our projects, regardless of their
flakiness, we assign to each test the SMMs gathered from each framework. If a SMM is present

Table 2
The use of different testing frameworks

Test framework Number of flaky tests

Jest 27
Cypress 16
Mocha 14

Puppeteer 5

in the fix commit identified in RQ2, it is labeled as flakiness inducing and if not, it is labeled as
non-inducing.

Finally, we perform a statistical analysis to define whether some types, which can be deter-
mined using the pre-computed code metrics, of SMMs are more likely to generate flakiness.
Answering this question allows us to propose strategies that can be implemented by tool
providers to assist developers to avoid introducing flakiness.

Our preliminary results suggest the following:

• Jest: developers solve Async Wait flakiness mainly by using separate wait, like page.wait()
method or delay functions.

• Cypress: developers resolve Async Wait flakiness mainly by testing the framework’s
integrated cy.wait() method.

• Mocha: Async Wait flakiness is also resolved using a separate wait method.
• Puppeteer: Async Wait flakiness is resolved using the framework’s integrated page
method.

4. Conclusion and Future work

In this paper, we demonstrate that flaky tests are equally common in front-end testing. Among
various types of flaky test failures, we specifically target Async Wait flakiness, one of the most
prevalent categories of flakiness identified in prior work and throughout our preliminary study.
For the benefit of the flakiness community and for our study, we generate a dataset of tests
exhibiting Async Wait flakiness. With this dataset, we start to analyze the root cause of Async
Wait flakiness and study how they can be fixed effectively by investigating the developers’ fixes,
specifically concerning the type of employed testing framework and more specifically their
implementation of the different synchronization mechanisms. Our current observations suggest
that this study will provide useful insights for future research on flaky tests in front-end testing.

As part of our future research, we will demonstrate that the proposed procedure is general-
izable and effective using other test suites, as well as investigate the possibility of developing
automated fixing strategies.

References

[1] Garousi, V., Felderer, Developing, verifying, and maintaining high-quality automated test
scripts. IEEE Softw. 33, 68–75 (2016)

[2] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, andD.Marinov, ”Deflaker: Automatically
detecting flaky tests,” in 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). IEEE, 2018, pp. 433–444.

[3] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta, ”Root causing flaky tests
in a large-scale industrial setting,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019, pp. 101–111.

[4] Leotta, Maurizio, et al. ”A family of experiments to assess the impact of page object pattern
in web test suite development.” 2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST). IEEE, 2020.

[5] Leotta, Maurizio, Andrea Stocco, Filippo Ricca, and Paolo Tonella. ”Pesto: Automated
migration of DOM‐based Web tests towards the visual approach.” Software Testing, Verifi-
cation And Reliability 28, no. 4 (2018): e1665.

[6] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding �aky tests: The de-
veloper’s perspective,” in Joint Meeting of the European Software Engineering Conference
and the Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, 2019,
pp. 830–840.

[7] Zolfaghari, Behrouz, et al. ”Root causing, detecting, and fixing flaky tests: State of the art
and future roadmap.” Software: Practice and Experience 51.5 (2021): 851-867.

[8] Eck, Moritz, et al. ”Understanding flaky tests: The developer’s perspective.” Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2019.

[9] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of �aky tests,” in
International Symposium on Foundations of Software Engineering (FSE). ACM, 2014, pp.
643–653.

[10] Z. Gao, Y. Liang, M. Cohen, A. Memon, and Z. Wang. 2015. Making system user interactive
tests repeatable: When and what should we control?. In ICSE. Florence, Italy, 55–65.

[11] W. Lam, K. Mus¸lu, H. Sajnani, and S. Thummalapenta, ”A study on the lifecycle of
flaky tests,” in Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, ser. ICSE ’20. New York, NY, USA: Association for Computing Machinery,
2020, p. 1471–1482.

[12] F. F. Valerio Terragni, Pasquale Salza, ”A container-based infrastructure for fuzzy-driven
root causing of flaky tests” 2020.

[13] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of bugs in test code,” in
2015 IEEE International Conference on Software Maintenance and Evolution (ICSME),
Sept 2015, pp. 101–110.

[14] Romano, Alan, et al. ”An empirical analysis of UI-based flaky tests.” 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021.

[15] Morán Barbón, Jesús, et al. ”FlakyLoc: flakiness localization for reliable test suites in web
applications.” Journal of Web Engineering, 2 (2020).

[16] Bell, Jonathan, et al. ”DeFlaker: Automatically detecting flaky tests.” 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, 2018.

[17] Shi, August, et al. ”iFixFlakies: A framework for automatically fixing order-dependent flaky
tests.” Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 2019.

[18] Ricca, Filippo, and Andrea Stocco. ”Web test automation: Insights from the grey literature.”
In International Conference on Current Trends in Theory and Practice of Informatics, pp.
472-485. Springer, Cham, 2021.

[19] ”Flaky tests at google and how we mitigate” https://testing.googleblog.com/2016/05/�aky-
tests-at-google-andhow-we.html.

[20] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, ”Usage, costs, and benefits of
continuous integration in open-source projects,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM, 2016, pp. 426–437.

[21] M. Fowler. (2011) Eradicating non-determinism in tests. [Online]. Available:
https://bit.ly/2PFHI5B

[22] Gruber, Martin, et al. ”An empirical study of flaky tests in python.” 2021 14th IEEE Confer-
ence on Software Testing, Verification and Validation (ICST). IEEE, 2021.

[23] Spadini, Davide, et al. ”Investigating severity thresholds for test smells.” Proceedings of
the 17th International Conference on Mining Software Repositories. 2020.

[24] Bushnev Y (2019) Top 15 ui test automation best practices. URL https://www.blazeme-
ter.com/blog/top-15-ui-test-automation-best-practices-you-should-follow

	1 Introduction
	2 Related work
	3 Methodology
	3.1 Research Question
	3.2 Data Collection
	3.3 Study setup

	4 Conclusion and Future work

